Note

Comment on "Comparison of Some Methods for Evaluating Infinite Range Oscillatory Integrals"

In their recent paper, "Comparison of some methods for evaluating infinite range oscillatory integrals," Blakemore et al. [1] have omitted mention of a method which, when it is applicable, can be greatly superior to all the methods they discuss: namely, deformation of the path of integration into the complex plane.

Their integrals are of the form

$$
\begin{equation*}
I(\omega)=\int_{0}^{\infty} d x f(x) W(x) \tag{1}
\end{equation*}
$$

where $W(x)$ is an oscillatory function, such as $\sin \omega x, \cos \omega x$ or a Bessel function, $J_{\nu}(\omega x)$. Suppose for example $W(x)=\cos \omega x$. Then their integral $I(\omega)=\operatorname{Re} J(\omega)$, where

$$
J(\omega)=\int_{0}^{\infty} d x f(x) e^{i \omega x}
$$

If now $f(x)$ is analytic in ($\operatorname{Re} x \geqslant 0, \operatorname{Im} x \geqslant 0$), and $f(x) e^{i \omega x}=o\left(x^{-1}\right)$ for $|x| \rightarrow \infty$, $\operatorname{Re} x \geqslant 0$, then the path of integration can be rotated into the upper half plane to give

$$
I(\omega)=\operatorname{Re}\left\{i \int_{0}^{\infty} d y e^{-\omega y} f(i y)\right\}
$$

which will often be much more easily evaluated. Similarly, a Bessel function may be replaced by a Hankel function $H_{v}^{(1)}(x)=J_{\nu}(x)+i Y_{v}(x)$ which decreases exponentially in the upper half-plane. If desired one may use the complex conjugate functions in (1) and deform the contour into the lower half-plane.

The conditions I have stated above are stronger than necessary. However the analysis is elementary and familiar, and in any particular application it is usually easy to see if a desired path deformation is permissible.

I evaluated the integrals $I_{1}-I_{11}$ of Ref. 1 using this method. In most cases the integral was broken into two parts, $(0, \epsilon)$ and (ϵ, ∞) for some finite ϵ. This was done to avoid singularities on the imaginary axis (including the origin). Gaussian integration was used on the $(0, \epsilon)$ portion. On the other portion the change of variables $x=$ $\epsilon+\alpha r e^{i \theta}$ was used to transform the integral to the form $\int_{0}^{\infty} d r e^{-r} g(r)$, and this was evaluated by Gauss-Laguerre integration. The Gauss-trigonometric quadrature used in Ref. 1 would have been more economical of computer time on the ($0, \epsilon$) part, but even without that there was no difficulty in computing the integrals to 9 significant
figures using fewer function evaluations than were used in Ref. 1. The improvement was greater where the methods of Ref. 1 required the most evaluations. Note that after contour rotation all evaluations of f are given positive weight, but that in integration along the real axis half the evaluations receive positive weight and half negative-obviously an awkward way to evaluate an integral.

Acknowledgment

I thank Dr. G. E. Lee-Whiting, who also enjoys classical analysis, for discussion.

Reference

1. M. Blakemore, G. A. Evans, and J. Hyslop, J. Computational Phys. 22 (1976), 352.

Received: February 23, 1977; revised April 5, 1977.
K. B. Winterbon

Atomic Energy of Canada, Ltd.
Chalk River Nuclear Laboratories
Ontario, KOJ 1JO, Canada

